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Abstract: For wearable electronic devices to be fully integrated into garments, without restricting or
impeding movement, requires flexible and stretchable inks and coatings, which must have consistent
performance and recover from mechanical strain. Combining Carbon Black (CB) and ammonia
plasma functionalized Graphite Nanoplatelets (GNPs) in a Thermoplastic Polyurethane (TPU) resin
created a conductive ink that could stretch to substrate failure (>300% nominal strain) and cyclic
strains of up to 100% while maintaining an electrical network. This highly stretchable, conductive
screen-printable ink was developed using relatively low-cost carbon materials and scalable processes
making it a candidate for future wearable developments. The electromechanical performance of the
carbon ink for wearable technology is compared to a screen-printable silver as a control. After initial
plastic deformation and the alignment of the nano carbons in the matrix, the electrical performance
was consistent under cycling to 100% nominal strain. Although the GNP flakes are pulled further
apart a consistent, but less conductive path remains through the CB/TPU matrix. In contrast to the
nano carbon ink, a more conductive ink made using silver flakes lost conductivity at 166% nominal
strain falling short of the substrate failure strain. This was attributed to the failure of direct contact
between the silver flakes.

Keywords: stretchable inks; wearables; carbon ink; graphite nanoplatelet; printed electronics;
cyclic loading

1. Introduction and Literature Review

Wearable electronics, such as fitness trackers, are increasingly being used within the
sport, fitness and health industries to improve our health, wellbeing and athletic per-
formance [1]. However, many of these devices are based upon conventional electronics
manufactured upon rigid silicone boards which can make garments uncomfortable and
impractical for many uses [1–3]. For the large scale uptake of wearable e-textile technolo-
gies, devices must be lightweight, mechanically robust, durable, capable of withstanding
bending and stretching, machine washable, aesthetically pleasing and must not impede
the garment’s ability to conform to body curvatures [3–6]. From a sporting and fitness
perspective it is also important that these devices do not impede sporting technique and
performance. Integrated devices must be able to stretch to facilitate flexibility and to
improve the conformability [7]. In textile applications about 15–20% strain occurs through
the life of the product [1], therefore, this should be considered a minimum target for the
extension capability of wearable devices. For devices to be truly anatomically compliant
requires the inks to maintain a conductive path under severe mechanical deformations [4,6].
In humanoid robot application where large deformation is experienced such as the knee
or elbow it is imperative the devices have stretchability [7]. Stretchable inks have been
developed that can extend beyond 100% strain so this should be considered a target for
stretchable inks [6]. Local strains induced during bending lead to tension and compres-
sion that can be very high, therefore, the ability to maintain an electrical network at high
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extensions is very important for wearable devices. For their uptake, printed electronics
and their incorporation into garments requires robustness to last several cycles at large
deformations (e.g., during creasing) together with moisture resistance from perspiration or
washing cycles, to give wearables suitable lifetime.

Printing offers a high volume, scalable method to produce thin, flexible, stretchable
and environmentally friendly devices produced by high throughput processes with reduced
unit production costs [7–9]. Coating textiles with conductive materials has been identified
as a way to add functionality, with recent applications including ultra-thin rechargeable
batteries [10], healthcare monitoring and the measurement of health parameters [5–7],
electronic entertainment devices [5], electroluminescent displays [11], and electrothermal
heating [12]. Previously developed stretchable inks have been printed using techniques
such as hand casting [13], mask printed [2], inkjet [6], stencil printing [14,15], screen
printing [1,6,11], and flexography [6]. Inkjet printing requires inks that have well defined
and narrow rheological parameters. This includes low viscosity and hence low particulate
concentration to enable jetting and to prevent the nozzle clogging. This process facilitates
relatively thin deposits of 1–10 µm at low speeds [6], restricting scalability and ability
to produce thick film prints. Screen printing is a promising coating method for creating
wearable devices as it allows for accurate patterning of thin films at economical rates
onto a wide variety of substrate materials [16]. Many of these previously developed
techniques have used low volume processing and lab-scaled techniques, therefore, there is
a need for a scalable wearable ink, and to understand the effect that processing has upon
its performance.

Conventional conductive inks have limited stretch-ability with poor durability to
creasing and machine washing [3]. To achieve flexible and stretchable electronic devices
with such inks requires the utilization of deformable structures. These allow the fabric
to stretch and flex while limiting the strain on the ink, e.g., by using a zig-zag pattern
that allows stretch in one direction only with minimal ink extension [4,7]. This limits the
potential applications and design of the garments.

Alternatively, intrinsically flexible materials can be formulated by dispersing conduc-
tive fillers within an elastic polymer matrix, with electrical conductivity tuned by varying
the loading of the filler material [4]. Conductive inks typically contain silver, carbon,
gold or copper as the conductive element within a polymer/solvent blend. The choice
and ratios of these materials is dependent on required conductivity, adhesion, ease of
processing, economics and substrate flexibility [17]. In general, the electrical conductivity
of the nano-composite inks will increase with filler loading. Unfortunately, elastic mod-
ulus, and therefore the stiffness of the material, also increases [7]. Metal based fillers are
often used in conductive inks due to their relatively higher bulk electrical conductivity
than alternatives such as carbon [7,9]. However, high loadings of metallic fillers are high
cost, often make inks brittle and impair adhesion [3]. Stretchable inks consisting of silver
flakes [2], Silver Nanowires [7], CNTs [6,14,15], and Ag/AgCl [14,15] have been developed
that are capable of maintaining electrical conductivity at >100%, however, many of these
materials are expensive or require extensive pre-treatment to enhance their dispersion.
Intrinsically stretch-able materials, such as polymers (e.g., PEDOT: PSS20) and CNT com-
pounds, generally permit high elongations but suffer from high resistance [1]. Therefore,
there is a need for more conductive stretchable inks made from lower cost, more easily
processable materials.

In addressing this, the advantages of carbon inks include their relatively low cost,
disposability, ease of use, chemical inertness and their controllable electronic proper-
ties [4,18–20]. However, compared to their metallic counterparts the conductivity of
non-metallic inks is relatively rather low [3]. Graphite is one of the widely used materials
for stretchable and conformable electrodes, however, to achieve the required conductivity
large amounts of filler are used, which also leads to the degradation of stretch-ability in
graphite-based nanocomposites [7]. Thus, there is a trade-off between stretchability and
conductivity. Graphite nanocomposites typically have weak mechanical strength as a result
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of poor interaction with the polymers [21]. Preparing high quality CNT and graphene inks
for printed devices involves several challenges, such as their high cost [7,21], and their
high surface area. Thus, obtaining inks with well-dispersed CNT/graphene suspension
is difficult due to the strong van der Waals interaction [6,7,21]. Therefore, there is a need
to develop stretchable carbon inks that are low cost, easily processable and readily dis-
persible. Pahaladegara et al. demonstrated stretchable inks made from CB that showed
bulk resistivity of 71 Ω·cm and could be strained up to 50% [22], however, these levels of
conductivity are too low to replace the role of conventional printed carbon inks.

Graphite nanoplatelets (GNPs) are a high aspect ratio graphitic nanocarbon, with a
surface that can be functionalized to give improved interaction with polymers and sol-
vents [23]. In a previous work by the authors Ammonia plasma functionalized GNPs
were shown to be well dispersed within the TPU resin system, with ammonia plasma
functionalized GNPs shown to have better dispersion stability, hypothesized to be a result
of improved interaction between the particles and the TPU [24]. Plasma functionalization
offers a dry, scalable, non-polluting, fast, one-step method of surface modification for car-
bon nanomaterials [25,26]. GNP only inks have been shown to have relatively low electrical
conductivity with bulk resistivities of ~3 Ohm·cm [24]. Hybridizing graphitic material with
carbon black (CB) has been shown to improve the electrical properties of inks and nanocom-
posites [13,16,18,27,28], as the submicron CB improves interparticle contact between neigh-
boring graphitic particles. Michel et al., examined reduced GNP/PDMS inks and found at
20 wt% the composites had a bulk conductivity of 0.35 s/cm [29]. Quinsaat et al., examined
the electro-mechanical performance of GNP/PDMS and GNP/CB/PDMS inks [13]. The
GNP only inks showed low conductivity of 1.4 S/cm and 0.9 S/cm at 42 and 30 wt%,
respectively, with the inks rupturing at relatively low strains of 18.5 and 30% nominal
strain. At a 2:1 ratio of GNP:CB the GNP/CB/PDMS inks showed increased conductivity at
30 wt% to 7.8 S/cm, however, the ink was relatively brittle and barely survived 20% strains,
making it unsuitable for wearable applications where larger strains may be encompassed.
At 18 wt% the 2:1 GNP: CB GNP/CB/PDMS ink showed significantly lower conductivity
at 0.25 S/cm, however, this ink was capable of surviving strains up to 140%. Given that the
resistivity of conventional conductive carbon inks is in the range of 0.04 Ω·cm [18,20], for
wearable inks to replace conventional inks in wearable devices a conductivity improvement
is required. This demonstrates the need for a scalable, low-cost carbon stretchable ink,
capable of withstanding large strains, while maintaining good electrical conductivity. Poly-
mer selection is vitally important in designing a stretchable ink as it dictates film flexibility
as well as its adhesive properties [30,31]. Elastomers such as Thermoplastic polyurethane
(TPU) and polydimethylsiloxane (PDMS) have been filled with conductive particles to
create intrinsically stretchable inks [1–3,13]. TPU was selected for this application as it
offers a combination of favourable properties such as excellent elongation, high impact
strength, good elasticity and biocompatibility [32]. Adhesion between the ink and the
substrate is important for the mechanical properties of the finished device, thick ink films
are often less flexible than the substrate it is printed on leading to poor adhesion [30]. Good
adhesion has previously seen between a TPU based silver ink and TPU substrates [2]. TPU
substrates have high abrasion resistance and high surface energy, giving significantly better
adhesion to the conductive material than untreated PDMS [1].

For the ink to be scalable the solvent must not evaporate so quickly on the screen to
cause drying in [30]. Previous studies have dissolved elastomers in harmful solvents such
as toluene [13,29], however, health and safety considerations are of vital importance for
effective scale up to larger quantities, therefore, the resin must form a stable solution in
safe solvents.

Printed devices such as electrochemical sensors and batteries often consist of both
carbon and silver inks [10,33]. The performance of the GNP/CB/TPU ink is compared
to a stretchable silver in the same resin solvent system, to demonstrate the performance
of the carbon against another conductive material in the same resin system. The effect of
the ink’s rheological properties on the processability, print topography, conductivity and
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electromechanical properties is also examined. Previous studies have shown stretchable
carbon inks made from expensive materials, using non-scalable processes, hazardous
solvents and having relatively low conductivity. However, for the widescale uptake of
wearable devices there is a requirement for the development of more highly conductive,
stretchable inks, from lower cost, safe materials using scalable manufacture techniques.
This study demonstrates the performance of a low cost, highly scalable, high conductivity
stretchable screen-printable GNP/CB ink and compares it to a silver ink in the same
resin system.

2. Materials and Methods

For the carbon composite ink, a blend of ammonia plasma functionalized Graphite
Nanoplatelets (GNPs) and conductive Carbon Black (CB) was dispersed into a commercially
available Thermoplastic Polyurethane (TPU) Resin in Diacetone alcohol. CB only [22] and
GNP only [13,24,29] have been shown to have poor electrical performance, therefore as
the aim of this study was to make a high conductivity, stretchable carbon ink. The ratio of
GNP to CB was optimized for electrical conductivity with the most conductive GNP to CB
ratio used in this study. To demonstrate the performance of the carbon ink its performance
was compared with a silver ink comprising 55 wt% of 10 µm silver flake dispersed in
the same TPU/solvent system. Silver flake was selected over spherical particles to give
greater particle overlap and particle contact. This ink would also have a role in wearable
technology as lower resistance printed circuit interconnects and busbars are required. Both
inks were three-roll milled using the milling procedure set out in Phillips et al. [18], to
further disperse the particles in the ink.

The stretchable inks were screen-printed using a semi-automatic, flat-bed, screen press
(DEK, ASM Assembly Systems GmbH & Co KG, Munich, Germany) using a 54–70 polyester mesh,
2.5 mm snap-off, a polyurethane diamond edge squeegee 130 mm length with a 12 kg
squeegee force and print/flood speeds of 70 mm/s onto a stretchable TPU substrate. The
TPU substrate has a thickness of 80 ± 5 µm [34]. These inks were dried for 10 min at 70 ◦C
and left for >24 h before testing to ensure all solvent had evaporated.

White light interferometry with 5× magnification lens and a 1.0 Field of view was
used to assess the print thickness and roughness. Print thickness was taken by measuring
the average difference in height between the substrate and the print at opposing edges of
5 of the prints. The average surface roughness (Sa), and the peak surface roughness (Sz),
was taken from the centre of 8 of the prints, away from any edge effects.

Samples were cut from the center of the prints and a high-resolution Field Emission
Gun Scanning Electron Microscope (FEG-SEM) (JEOL 7800F) (JEOL Ltd, Tokyo, Japan) was
used to take images of the dried prints at magnifications of 1000, 10,000 and 27,000×. For the
1000× carbon print a 10 kV lower electron detector was used, while for the 27,000× carbon
print and the 1000, and 10,000× silver prints an 8 kV upper electron detector was used.
ImageJ software (ImageJ 1.52a, National Institutes of Health, Bethesda, MD, USA) was then
used to analyse the particle sizes, by taking 10 calibrated measurements and presenting the
results as the mean ± the standard deviation.

The sheet resistance of the prints was measured using a 4-point probe (SDKR-13,
NAGY Messsysteme GmbH, Gäufelden, Germany) with a 1.3 mm gap with a digital multi-
meter (Keithley, Tektronix, Beaverton, OR, US). The sheet resistance of the carbon ink
was taken from 5 measurements along the centre of 8 of the block carbon prints, using a
correction factor of 4.5129 as proposed by Smits [35]. The sheet resistance of the silver ink
was taken from 5 measurements from 6 prints along the centre of the 0.5 × 15 cm prints,
using a correction factor of 3.2248, see Smits [35]. Bulk resistivity was then calculated by
multiplying the sheet resistance in Ohms by the print thickness in cm for 6 samples. Bulk
conductivity was calculated as the inverse of bulk resistivity.

The rheological properties of the ink were measured using a stress-controlled rheome-
ter, Malvern Kinexus Pro (NETZSCH-Gerätebau GmbH, Selb, Germany) A 40 mm diameter
roughened parallel plate geometry was used to negate the risk of wall slip due to the heavily
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filled nature of the fluids. The temperature was kept constant at 25 ◦C using a Peltier plate
system. The inks were first ramped to 100 s−1 to ensure consistent pre-shear throughout
the samples, as it was hypothesised this shear rate would be greater than any applied
during the application and stirring of the sample. Shear viscosity values were taken from
the down shear ramp from 100 to 0.1 s−1. The experimental error on the Malvern Kinexus
was examined to be <0.13 Pa·s at 1 s−1 across three measurements [24].

Procedures compliant with International Standards were used for the determina-
tion of tensile properties of plastics, BS EN ISO 527-1:2012, and films and sheets, BS
EN ISO 527-3:1996, were used to guide the measurement of the tensile properties of the
coatings [36,37].

Three 15 × 0.5 cm test strips were cut from the prints using a sharp knife, with the
edges of the samples inspected for any notches or tears.

Adhesive copper tape was attached 0.5 cm from opposing ends of the test sample to
leave a 14 cm electrical path length. Clips were then attached to ensure good electrical
contact between the wires and the flat printed samples. Resistances were measured
continuously during tensile testing using a source meter. Tensile testing was performed
using a Hounsfield Tensile Tester (Hounsfield, Tinius Olsen TMC, Horsham, PA, US) with
a 100 N load cell, gripped to give a test section length of 10 cm and an extension speed of
50 mm/min (Figure 1a).
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Figure 1. Electromechanical testing of the stretchable inks. (a) Simultaneous measurement of electrical and extensional
tensile properties (b) Simultaneous compression and measurement of electrical properties.

The samples were tested in a controlled lab environment (18 ± 1 ◦C, 50 ± 10% relative
humidity). The nominal strain used for testing was calculated from the measured gripper
displacement. Three samples were tested to extension at break. A further three samples
were cycled to 10% nominal strain 30 times. Compression tests were also performed using
a 10 kN load cell and a 250 N compressive force on 3 further printed samples (Figure 1b).
The samples were compressed with the ink on the outside radius initiating large tensile
strains, to simulate the inks being creased during use.

Formulas:
Engineering Stress:

σ =
F
A

(1)

where;
σ is the stress value in question, expressed in megapascals (MPa);
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F is the measured force concerned, expressed in newtons (N);
A is the initial cross-sectional area of the specimen, expressed in square millime-

tres (mm2).
Nominal Strain Percent:

εt =
Lt

L
× 100 (2)

where;
εt is the nominal strain, expressed as a percentage;
L is the gripping distance, expressed in millimetres (mm)
Lt is the increase in the gripping distance occurring from the beginning of the test,

expressed in millimetres (mm).
Change in Resistance:

Change in Resistance =
Change in Resistance

Initial Resistance
× 100 (3)

3. Results

Prints were performed as set out in the Materials and Methods section and to facilitate
comparison, the carbon and silver inks have been printed at similar thicknesses of 7.96 and
8.73 µm, respectively. The performance of the two inks can be seen in Table 1 and these
have been derived from repeat measurements as set out in the table. The sheet resistance
of the stretchable GNP/CB/TPU ink was 230 Ω/� while the silver ink had significantly
lower sheet resistance at 0.078 Ω/�. The sheet resistance of the silver ink is considerably
lower than the carbon ink owing to the silver’s higher bulk electrical properties.

Table 1. The printed properties of the Carbon and Silver print. Printed thickness is taken from n = 10
measurements and shown ±s.d. Average surface roughness (Sa) and Peak-peak surface roughness
(Sz) is shown from n = 8 measurements and shown ±s.d. Sheet resistance was taken 40 measurements
from n = 8 samples for the carbon ink and 30 measurements from n = 6 samples for the silver and
shown ±s.d.

Ink Printed
Thickness [µm] Sa [µm] Sz [µm] Sheet Resistance

[Ω/�]

GNP/CB 7.96 ± 0.78 0.67 ± 0.04 10.24 ± 1.67 230.102 ± 12.40
Silver 8.73 ± 0.51 1.19 ± 0.08 11.91 ± 1.22 0.078 ± 0.0005

Sheet resistance is a function of layer uniformity and thickness; therefore, bulk
resistivity is a more appropriate method of comparing the electrical properties of inks in
the literature as it accounts for the thickness. The bulk resistivity of the GNP/CB/TPU
ink was calculated to be 0.196 ± 0.013 Ω·cm, with the bulk conductivity therefore
5.097 ± 0.367 S/cm. The bulk resistivity of the GNP/CB/TPU carbon ink is significantly
lower than the low-cost carbon inks in the literature such as 71 ± 4 Ω·cm CB/TPU ink
used by Pahalagedara et al. [22], the 0.25 S/cm found for the 18 wt% GNP/CB/PDMS
screen printed by Quinsaat et al. [13], and is significantly closer to the the 0.04 Ω·cm found
for traditional non-stretchable, conductive carbons such as Graphite/CB/Vinyl inks used
by Phillips et al. [18], and the 0.038 of Potts et al. [20], That the GNP/CB/TPU ink showed
similar performance to the commercially available carbon inks for printing indicating the
GNP/CB/TPU ink could be a promising stretchable alternative conductive carbon ink.

The roughness of the surface of a printed feature is a consequence of the substrate
topography, the topography of the printed layer, which is a function of the print pro-
cess and the ink’s rheological properties, and roughness due to particles [10–12,16–18].
When the carbon coating was printed onto the substrate the surface roughness approxi-
mately halved compared to the TPU substrate, reducing it from 1.28 ± 0.03 µm (s.d) to
0.67 ± 0.04 µm (s.d), as the ink spread to fill the valleys in the substrate (Figure 2). With
an Sa of 0.67 µm, the GNP/CB/TPU ink has a significantly lower roughness than the
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1.7 µm found for a 30 wt% Graphite/CB ink by Potts et al. [20], and the ~1 µm found for a
21.7 wt% 1.8:1 Graphite/CB ink found by Phillips et al. [18].

Nanomaterials 2021, 11, x FOR PEER REVIEW 7 of 15 
 

 

The roughness of the surface of a printed feature is a consequence of the substrate 
topography, the topography of the printed layer, which is a function of the print process 
and the ink’s rheological properties, and roughness due to particles [10–12,16–18]. When 
the carbon coating was printed onto the substrate the surface roughness approximately 
halved compared to the TPU substrate, reducing it from 1.28 ± 0.03 μm (s.d) to 0.67 ± 0.04 
μm (s.d), as the ink spread to fill the valleys in the substrate (Figure 2). With an Sa of 0.67 
μm, the GNP/CB/TPU ink has a significantly lower roughness than the 1.7 μm found for 
a 30 wt% Graphite/CB ink by Potts et al. [20], and the ~1 μm found for a 21.7 wt% 1.8:1 
Graphite/CB ink found by Phillips et al. [18]. 

 
Figure 2. White light images at 5× magnification of the centre of single layer prints of carbon (a) and (b) the, silver (c) and 
(d). These respectively represent a 1.2mm × 0.9 mm scan area, where wrl represents the height of the surface in μm and 
cross-sectional X-profile of the white light images showing the roughness across the surface of the prints in microns, where 
ΔZ represents the difference in height between the reference area (R) and the measure area (M). 

To gain an understanding of the above, screen-printing is a process in which ink is 
forced through the open areas of a stencil supported by a mesh of synthetic fabric sup-
ported by a frame, and onto the substrate underneath by drawing a squeegee over the 
stencil [30]. The flow of ink through the mesh is significant since it determines the uni-
formity of the printed surface which is an important factor in conductive circuits [9]. Fur-
thermore, for high quality screen prints, characterised by dimension and surface topogra-
phy, it is well known that inks need to show a shear thinning characteristic and conse-
quently ink rheology was tested as part of the development. 

Material rheology impacts processes subsequent to ink transfer [16]. The more vis-
cous an ink the more difficult it is for the ink to spread into an even film [31]. Higher low 

ΔX = 0.6294mm  ΔZ = 2.5542 μm 

ΔX = 0.3417mm  ΔZ = 5.3315 μm 

Figure 2. White light images at 5× magnification of the centre of single layer prints of carbon (a) and (b) the, silver (c) and
(d). These respectively represent a 1.2 mm × 0.9 mm scan area, where wrl represents the height of the surface in µm and
cross-sectional X-profile of the white light images showing the roughness across the surface of the prints in microns, where
∆Z represents the difference in height between the reference area (R) and the measure area (M).

To gain an understanding of the above, screen-printing is a process in which ink is
forced through the open areas of a stencil supported by a mesh of synthetic fabric supported
by a frame, and onto the substrate underneath by drawing a squeegee over the stencil [30].
The flow of ink through the mesh is significant since it determines the uniformity of
the printed surface which is an important factor in conductive circuits [9]. Furthermore,
for high quality screen prints, characterised by dimension and surface topography, it is
well known that inks need to show a shear thinning characteristic and consequently ink
rheology was tested as part of the development.

Material rheology impacts processes subsequent to ink transfer [16]. The more viscous
an ink the more difficult it is for the ink to spread into an even film [31]. Higher low shear
viscosities and steeper shear profiles give higher print roughness owing of the inability of
the ink to level following release from the screen [18], leaving a relatively rough surface
with mesh marking [20]. The rheological properties of the two inks and the unfilled resin
can be seen in Figure 3. The unfilled TPU resin has a relatively low viscosity at 2.46 Pa·s at
1.18 s−1 and shows approximately Newtonian behaviour. The addition of particles to the
unfilled TPU resin increased the viscosity especially at low shear-rates, with suspensions
showing the desired non-Newtonian behaviour over the whole measurement range. The
silver had the greatest effect on the low shear viscosity and at 3 s−1 falls below that of the
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carbon where the shear forces break down any interparticle interactions reducing their
effect on viscosity. The addition of the GNP and CB to the unfilled TPU resin has a similar
benefit in giving the ink shear thinning properties. In combination, they form a network.
However, this network is weaker, reflected in a smaller shear thinning effect.
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and the unfilled TPU resin system from a downwards shear ramp.

The silver prints were significantly rougher than the carbon with average surface
roughness of 1.19 µm. The white light images show a structure of peaks and valleys within
the topography of the prints, with the difference in the thickness of the coatings in these
areas as high as 5.33 µm (Figure 2b). The high low-shear viscosity of the silver ink prevents
the ink from levelling having passed through the screen to leave a relatively rough surface
with mesh-marking. In contrast the relatively low surface roughness of the carbon prints
suggests the hybrid GNP/CB was able to flow freely through the screen and level following
the screen pulling away from the substrate to create a smooth, uniform coating (Figure 2a).

A scanning electron microscope was used to examine the microstructure of the coatings
(Figure 4). Figure 4a shows a lower resolution image of the GNP/CB composite which
exhibits a near homogeneous surface, with the GNP flake size shown to be 4.05 ± 0.89
µm. To gain further insight, Figure 4c shows a typical high-resolution image that captures
the CB particles and the GNP platelets. The CB can be identified clearly as its scale is
typically 0.05 ± 0.02 µm in comparison with the GNP that is typically 4.05 ± 0.89 µm.
The smaller, spherical CB particles appear to decorate the face of the platelets, to form a
dense 3D-network. Indeed, despite exposure to high levels of strain rate during the ink
making and printing processes the sub-micron CB particles appear to have largely attached
in groups to the face of the GNP platelets. Measurement of the visible GNP platelet edges
in Figure 4c, shows the plate thickness to be 0.010 ± 0.003 µm, which given the previously
measured thickness of 4.05 ± 0.89 µm, demonstrates the high aspect ratio of the GNPs. The
corresponding images for the silver ink are shown in Figure 4b,d. In contrast the smaller
silver flakes appear to form a less homogenous microstructure, with voids present in the
structure (Figure 4b). The higher resolution image in Figure 4d shows clearly that adjacent
flakes leave small voids in the ink film as the flakes tend to lock together rather than flow
that is typical of spherical particle geometries.
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The mechanical properties of the coated samples were dominated by the substrate
because of the substantially higher thickness of the substrate of 80 µm, compared to the
approximately 8 µm thickness of the printed layer (Figure 5a). Engineering stress and
nominal strain were used to characterise the mechanical properties as the samples were
drawn to failure. The uncoated TPU substrate shows a typical soft rubber-like material
stress–strain response with a small linear elastic region at nominal strains of approximately
<5%, followed by a plateau before the substrates break at 330% nominal strain. The carbon
coating increased the shear stress at nominal strains <50% but decreases the strain at break
to 305% nominal strain. This increased stress at low nominal strains could be a result of the
carbon coating stiffening the substrate, giving a reinforcing effect.
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The difference in extension at break is within the standard deviation of the substrate
therefore the sample break is probably the result of substrate failure.

The silver ink showed a similar stress–strain curve to the uncoated substrate indicating
the silver coating does not have the same reinforcing effect as the carbon.

Change in resistance with nominal strain allows for a better comparison of the two
inks as carbon and silver have significantly different bulk electrical properties (Figure 5b).
The change in resistance with applied strain is higher in the silver ink, however, the inks
show a similar shape response until at above 100% nominal strain the silver prints show
a rapid increase in resistance losing electrical conductivity completely at 166%, while the
carbon maintains a conductive network until 305%. Although having a higher initial
resistance the carbon inks maintain electrical conductivity up to the point of failure at a
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nominal strain of 305% (Figure 5b). The silver ink has a lower initial resistance however,
it loses electrical conductivity at a significantly lower nominal strain of 166% (Figure 5b)
indicating the conductive network has already been broken despite the coating continuing
to be extended to mechanical break at nominal strains 346% (Figure 5a).

Having explored the tensile failure, the prints were strained cyclically to 10% nominal
strain to explore behaviour at levels close to the requirements for normal wearable textile
applications. The strain was chosen to just exceed the elastic range of the materials. The
carbon ink was also stretched repeatedly to 100% nominal strain to examine the cyclic
response at extreme strains.

The electro-mechanical response of the carbon and silver inks when cyclically loaded
to 10% nominal strain can be seen in Figure 6. During the first cycle the resistance of the
carbon ink increases by 103% at 10% nominal strain, with the resistance returning to 65%
of its maximum value once the nominal strain returns to 0%. The resistance of the carbon
ink continues to recover to 53% of its original value at 4.3% nominal strain in the next
cycle. The increase in resistance at 0% nominal strain is likely a result of the permanent
increase in the electronic pathlength as a result of permanent deformation to both the
TPU substrate and the ink, this permanent increase in the length of the coating would
be expected as 10% nominal strain is outside of the linear elastic region of the coatings
(Figure 5a). The re-orientation of the particles in the ink following initial deformation
has previously been suggested as a mechanism behind this increased resistance following
initial strain [38]. Having been strained to 10% nominal strain the electrical resistance of
the carbon inks continued to recover following the sample returning to 0% nominal strain,
up till approximately 5% strain in the next cycle. This is as the sample continues to recover
while the sample is slack in the grips following its permanent deformation. The coating
and substrate have experienced a permanent deformation of approximately 4%, increasing
the electronic path length.
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There are smaller increases in the resistance of the carbon print with increasing number
of cycles at 10% nominal strain, decreasing from 103% in the first cycle before becoming
consistent at an increase in resistance of 80.6% between cycles 15–20. The recovered strain
following each cycle becomes consistent at to 51.3% during cycles 15–19. The decrease in
the change in resistance and the increase in the consistency of the change in resistance to
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10% nominal strain with increasing number of cycles suggests a permanent change in the
microstructure of the printed layer, possibly orienting the particles in the direction of the
strain to better facilitate strain in this direction.

The change in resistance of the silver prints at 10% nominal strain increases with the
number of cycles (Figure 6), with the strain at 10% nominal strain increasing from 129% in
the first cycle to 267% at cycle 20. This indicates there is a change in the microstructure of
the silver prints with every strain, which is not fully recovered when the strain is removed
and negatively affects the electronic properties of the print. This result renders the silver ink
formulation unsuitable for large strain applications, pointing to the need for the exploration
of new formulations.

The effect of cyclically stretching to 100% nominal strain on the electrical properties of
the carbon inks can be seen in Figure 7. The resistance of the prints at 0% strain increases
after the first cycle as there is a permanent increase in the electronic path length owing to
the permanent increase in the length of the print and the substrate. The change in resistance
at 100% nominal strain decreases with the number of cycles from 6317% after the first cycle,
to 5512% after the 20th cycle, again indicating the change in the microstructure of the prints
as the conductive materials become aligned with the strain to stabilise their resistance
excursions to cyclic strain.
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Results Summary

The carbon ink-maintained conductivity to >300% nominal strain. During cyclic
strains to 100% nominal strain, following an initial increase in resistance, the increase in
resistance at 100% nominal strain decreased with number of cycles. The microstructure
of the carbon is changing to accommodate the high strains, reducing the effect of strains
on the electrical properties. In contrast the silver ink lost electrical conductivity at 166%.
When straining to 10% nominal strain the resistance of the silver increased with the number
of cycles.

On a micro level, the smaller, lower aspect ratio silvers lie largely parallel to the
substrate with large voids present between neighbouring particles (Figure 4b,d). Araki et al.
showed that as mechanical strain increases the silver particles are pulled further apart from
one another decreasing the number of electrical contacts between neighbouring flakes and
subsequently increasing the resistance [2]. The application of a large strain pulls these
particles further away from one another, reducing interparticle contact until eventually
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at 166% a conductive pathway through the print is no longer available. The increases in
resistance become greater with the number of cycles could indicate that these particles are
being moved to new positions within the coating with every cycle and this is not recovered
when the strain is removed. This leads to cumulative increases in the resistance with the
number of cycles.

The surface of the GNP flakes was decorated with CB, giving a dense 3D network
of particles, with the high aspect ratio platelets aligned at various angles to the substrate
(Figure 4a,c). The application of strain would be expected to increase the distance between
neighbouring GNPs in the same manner as the silver particles, decreasing interparticle
contact and therefore increasing resistance. However, this strain could also align the
platelets in the direction of strain, parallel to the substrate, allowing them to maintain an
electrical contact even at high strains. This permanent change in the microstructure would
result in a decreased effect of strain on the electrical properties while the sample is under
tensile strain.

On a macro level the relatively low viscosity of the carbon ink allowed the ink to easily
pass through the screen to create a print of low surface roughness, Sa = 0.67 µm. The ability
of the ink to flow out under the mesh to form a consistent film is important for the good
adhesion between the ink and the substrate [30]. In contrast the high, low-shear viscosity
of the silver ink meant that it was unable to relax having passed through the screen and
formed a rough surface, with Sa = 1.19 µm related to variances in print thickness of <5 µm
(Figure 2c,d). Under tensile strains, these mounds of conductive material could be pulled
away from each other, with higher stresses being experienced by the thinner areas between
the mounds, until the conductive material was pulled far enough away from one another
that the conductive network becomes broken.

The mechanical properties of the prints were dominated by the substantially thicker
substrate. Good adhesion between the ink and the substrate are likely to play an important
role to help facilitate the transfer of strain from the substrate to the printed sample. That
the carbon ink maintained a conductive network up until substrate break suggests good
adhesion between the ink and the substrate.

Strains locally during bending and compression can be very high, therefore a test
was developed using a force of −247 ± 35 N to compress a crease into the sample with
the resistance change measured. The printed side of the sample was on the outside of
the compression to maximise strains. During compression, the resistance increased by
3.87% ± 0.06 (s.d) and following the removal of this compressive force the resistance of
the sample instantly recovers to a 1.83% ± 1.00 (s.d) increased resistance. This permanent
change in the resistance is likely a result of an increase in the electronic path length, visible
as a crease in the sample. The change in resistance is significantly lower than for the
tensile testing, as the stresses applied during compression are more local than those during
tensile testing.

4. Conclusions

A novel GNP/CB/TPU screen-printing ink has been developed using low-cost carbon
materials and non-harmful solvents making it a viable candidate for scale up. The ink
also showed good print performance on a semi-automatic screen press, with the ink freely
passing through the screen to create a uniform coating with surface roughness Sa = 0.67 µm.

To replace conventional inks for use in wearable electronics new stretchable inks
must first develop competitive electrical properties relative to conventional inks. The
GNP/CB/TPU ink showed improved electrical performance when compared with similar
inks in the literature [13,22,29] with a bulk resistivity of 0.196 ± 0.013 Ω·cm, which is close
to the performance of conventional conductive inks [18,20]. A novel GNP/CB/TPU ink
has been developed that could maintain electrical conductivity up to 300% nominal strain,
cyclic straining to 100% and showed good resistance to compression.

The mechanical properties of the coated samples were dominated by the substan-
tially higher thickness of the substrates compared to the prints. The performance of the
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GNP/CB/TPU ink was compared to a silver ink within the same resin. The carbon ink
maintained electrical conductivity until sample break at approximately 300% nominal
strain whereas the Silver flake coating lost electrical conductivity at around 150%. The
carbon ink also showed increased resistance to repeated cyclic straining. During cyclic
strain testing to 10% after an initial permanent deformation during the first strain cycle the
carbon ink showed consistent electrical response to applied strain, whereas the resistance of
the silver ink increased with every cycle as the sample continued to undertake permanent
deformation.
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